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1 Proof of Corollary 1

We first rewrite the value functions in the single server case. So as to simplify the presentation of the proof,
we redefine the states as follows; the parameter z denotes the state of the agent (0: idling, 1: busy with an
inbound or an outbound call),  is the number of inbounds in queue 1 and y is the number of outbounds in

queue 2. We have for n > 0,

Un+1(0,0,9) = 72y + AV(1,0,y) + (1 = A)V,(0,0,y), fory >0

Unp1(L,z,9) =z + 72y + A (Lo<acr) (1 — ax) Va1, 4+ 1,9) + aa(Va (1, 2,y) +73))
Flpcoan) (@Va(lz,y +1) + ax(Va(l,2,y) +73) + (1 — ¢o — ap) V(L2 + 1,y))
= (av_1Va(Lz,y + 1) + (1 — gyv-1)(Va(1,2,9) +73)))

+ Bz(Va(l,z — 1,y) +73) + 1 (L(o=0)Va(0,0,9) + Lz=0)Va(l, 2 — 1, 7))

+(1_A_6$—M)Vn(1,$,y), for 33’920;

with V;,11(0,0,y) = min(U,,+1(1,0,y — 1),Up+1(0,0,y)) for y > 0, and V,,41(z,2,y) = Uny1(2,2,y) in the
remaining cases. We choose Vo(z,x,y) = Up(z,2,y) =0, for 2 =0,1 and x,y > 0.

We define a class of functions F from {0,1} x N2 to R as follows: f € F if for 2 = 0,1 and z,y > 0, we



have

fLz+1y) > f(1,2,), (1)
£(1,0,y) > f(0,0,y) (2)
fQzy+1) = f(Lz,y), (3)
f(0,0,y +1) > £(0,0,y), (4)
fLzy)+ fLz+lLy+1) > f(Lz+ 1y + f(Lz,y+1), (5)
£(0,0,y) + f(1,0,y + 1) > f(1,0,y) + f(0,0,y + 1), (6)
fLz,y+2)+ f(Lz+1,y) > f(Lz,y+ 1)+ f(L,z+ 1,y + 1), (7)
f(0,0,y+2)+ f(1,0,y) > £(0,0,y +1) + f(1,0,y + 1). (8)

Relations (1) and (3) define a class of increasing functions in = and in y. Relation (5) is known as supermod-
ularity. By summing up Relations (5) and (7) we obtain f(1,z,y) + f(1,z,y+2) > 2f(1,2,y + 1), and by
summing up Relations (6) and (8) we obtain f(0,0,y) + f(0,0,y 4+ 2) > 2f(0,0,y + 1). Thus if f € F, then
f is convex in y. Relations (7) and (8) means that the function f(z,z,y+ 1) — f(z,2 + 1,y) is increasing in
y for z = 0,1. Note that only Relation (8) proves the optimality of the threshold policy. However, all the
remaining relations have to be proven together to show the propagation of Relation (8).

To simplify the presentation, we denote by “serve” the decision action to serve an outbound call, and by
“keep” the decision action to keep an outbound call in queue 2. The proof of the optimality of the threshold
policy reduces to show that Relation (8) is true for U,, n > 0.

In what follows, we prove by induction on n that both V,, and U, are in 7. We divide the proof into the
following 5 steps:

e Step 1. We prove that Vy, Uy € F.
e Step 2. We prove that if for a given n, U,, € F, then V,, € F.
e Step 3. We prove that the cost term G(z,z,y) = y1x + Yoy is in F for 2 = 0,1 and z,y > 0.
e Step 4. We prove that if for a given n, V,, € F, then the arrival term defined by
An(l,%y) = 1(O§m<k) ((1 - am)Vn(Lx + ]-vy) + am(vn<17xa y) + 73))

+1(k§x<N) (qun(]-vxay + 1) + az(Vn(]-vxay) + ’)/3) + (1 —qz — am)Vn(]-?x + 17y))

+1a=m(an-1Va(Lz,y + 1) + (1 — gn-1)(Va(1l,2,y) +73))

for z,y > 0 and A,(0,0,y) = V,,(1,0,y) for y > 0, is also in F.



o Step 5. We prove that if for a given n, V;, € F, then the departure term defined by

Dn(Lx,y) = Bx(vn(law - 1>y> + 73) + 2 (1(m:O)Vn(0a 07y) + 1(m>0)Vn(17x - 17y)>
+(L=A =Bz —p)Vau(l,2,y)

for z,y > 0 and D, (0,0,y) = (1 — A\)V,,(0,0,y) for y > 0, is also in F.

The proofs for the previous five steps are given below.
Step 1. For z,y > 0and z =0,1, Vy(z,2,y) = Uo(z,z,y) = 0. Then V;, Uy € F.

Step 2. Assume that for a given n > 0, U,, € F. We only consider the non trivial cases where z = 0 and
y > 0. In the other cases, we have U,, = V,,. Therefore we only need to prove Relations (2), (4), (6) and (8).
- For Relations (2) and (4), we have

V2(0,0,y) < Ua(0,0,y), 9)

Since no action can be chosen if the server is busy, V,,(1,0,y) = U,(1,0,y). Combining Inequality (9) with
Relation (2) for U, leads to V;,(0,0,y) < V(1,0,y) and proves Relations (2) for V.

If “keep” is optimal in (0, 0, y+1), then V,,(0,0,y+1) = U,(0,0,y+1). Combining Inequality (9) with Relation
(4) for U, leads to V,(0,0,y) < V(0,0,y + 1). If “serve” is optimal in (0,0,y + 1), then V,,(0,0,y +1) =
Un(1,0,y). Combining Inequality (10) with Relation (3) for U, leads to V,,(0,0,y) < V(0,0,y+1). Therefore
in all cases, Relations (2) and (4) hold for V;,.

- For Relation (6), we have

Vo(1,0,) + Vo(0,0,y +1) < Un(1,0,y) + Upn(0,0,y + 1) for y > 0, (11)

Va(1,0,y) + Vi (0,0,y + 1) < 2Un(1,0,y) for y > 0. (12)

If “keep” is the optimal action in state (0,0,y), for y > 0, then V;,(0,0,y) + V,(1,0,y + 1) = U,(0,0,y) +
Un(1,0,y + 1). Thus, combining Relation (6) for U, and Inequality (11) proves Relation (6) for V;,, for
y > 0. If “serve” is the optimal action in state (0,0,y), for y > 0, then V,,(0,0,y) + V,,(1,0,y + 1) =
Un,(1,0,y — 1) + U,(1,0,y + 1). Combining the convexity in y of U,, and Inequality (12) proves Relation (6)
for V,,, for y > 0. In all cases, Relation (6) then holds for V,.

- For Relation (8), we have

Vi(0,0,y +1) + Vo (1,0, + 1) < Un(0,0,y + 1) + Up(1,0,y + 1) for y > 0, (13)

V5 (0,0, + 1)+ V5, (1,0,y + 1) < U, (1,0,y) + U, (1,0,y + 1) for y > 0. (14)

If “keep” is the optimal action in states (0, 0,y +2), for y > 0, then V,,(0,0,y+2)+ V,(1,0,y) = U,(0,0,y +



2) + U,(1,0,y). Combining next Relation (8) for U,, and Inequality (13) proves Relation (8) for V,,, for
y > 0. If “serve” is the optimal action in state (0,0,y + 2), for y > 0, then V,,(0,0,y + 2) + V,,(1,0,y) =
Un(1,0,y + 1) + U,(1,0,y). Inequality (14) proves Relation (8) for V,,, for y > 0. Finally we deduce for all

cases that Relation (8) is true for V;,.
Step 3. This step is easy to prove and directly follows from Koole (2007) page 33.

Step 4. Assume that V,, € F, for a given n > 0. We now show that A, € F

In Relation (4) we have z = 0 and the arrival of a new call has the same effect on each term of the
relation. Since the transition rates are constant, the induction from V,, to A, is direct (see Koole (2007)
page 35)

The other relations have to be shown to prove the induction from V,, to A,. For Relations (1), (3), (5)
and (7), the case x < k — 1 is a simplification of the case k < 2 < N — 1 since the possibility of going to
queue 2 is not considered, we therefore only show the case k < < N — 1.

- For Relation (1):

If t =k —1, then
An(l,z+1,y) — An(Lz,y) = g Va(L,ze+ Ly + 1) + o (Va(L,z + L,y) +v3) + (1 — o — qi) V(1,2 + 2,9)
—(I—op-1)Va(lLz+1,y) — ap—1(Va(l,2,y) + v3)
=g (Va(Lz+1,y+1) = Va(l,z+1,9) + a1 (Va(l,z + 1,y) — Va(1,2,9))

+ (1 —ar —gp)(Va(l,z+2,y) = Vo(L,z + 1,y)) + v3(ar —ag—1) >0,

since V, is increasing in x and in y.
If k <z < N —1, then

An(Lz+1,y) = An(L2,y) = a1 Va(Lz + Ly + 1) + aet1(Va(Lz + 1,y) +93) + (1 — dot1 — ga41)Va(l,z + 2,y)
—@Va(l,z,y+1) —ax(Va(l,z,y) +73) — (1 — az — g2)Va(l,z + 1,9)
=gz (Va(Lz+1Ly+1) = Va(Lz+1,9)) + (¢a+1 — ¢2)Va(Lz + Ly + 1)
+ac(Va(liz+1,y) = Va(l,2,9)) + (@e+1 — az)Va(l,z + 1,y) + v3(azt1 — aa)
+ (1= oet1 = qet1)(Va(Lz +2,9) = Va(Lz + 1,9)) + (02 + ¢o — dot1 — Ga41)Va(l,z + 1,y)

> (qet1 — @z)(Va(Lz + 1,y +1) = Vo (L, z + 1,9)) >0,

since V, is increasing in y and g, is increasing in x.
If z = N — 1, then
An(Liz+1,y) = An(L,2,9) = @aVa(l,z + Ly +1) + (1 = g2)(Va(l,z + 1, y) + 73)
—@Va(Lz,y+1) —ae(Va(lz,y) +93) — (1 — 0w — g2) V(L2 + 1,)
= aﬂ?(V"(]wx + 17y + 1) - Vn(17x7y)) + qz(Vn(l,x + 17y + 1) - V’ﬂ(lvxvy + 1))

+73(1 — gz —ag) >0,

since V,, is increasing in  and in y. Finally for all cases, Relation (1) is true for A,,.



- For Relation (2), we have

A"(1707 y) - An(07 0) y) = (1 - aO)VH(L Ly) + OLO(Vn(l,O, y) +73) - Vn(1’07 y)

= (1 - aO)(V’"«(lv 1zy) - V’ﬂ(lvovy)) + @073 >0,

since Relation (1) is true for V,,. Hence, Relation (2) is true for A,.
The propagation of Relation (3) through the arrival operator is straightforward.
For the following relations, we do not write the terms in -3 since they simplify in the considered differences.
- For Relation (5):
If x =k — 1, then
An(Lz,y) + An(Lz+ 1,y +1) — Ap(Lz,y +1) — Ap(Lz + 1,7)
=ap_1Val,z,9) + (1 —ar_1)Va(L,z+ 1L, y) + @ Va(Lz + 1,y +2) +axVa(Lz + L,y + 1)+ (1 —ar — q)Va(L,z + 2,y + 1)
—ap1Va(lz,y+1) - (1 —og—1)Va(le+ Ly+ 1) —qVa(lLz+ Ly+1) —apVa(lLz+ Ly) — (1 —ap — qp)Va(l,z +2,9)
=op_1(Va(l,z+1Ly+ 1)+ Va(l,z,y) — Va(l,z 4+ 1,y) — Va(l,z,y + 1))
+a(Va(Lz+1,y+2)+Va(L,z+2,y) — Va(l,z+2,y+1) — Va(l,z+ 1,y + 1))
+ (1 —o)(Vall,z+ 2,5+ 1)+ Va(l,z+ 1,y) — V(L + Ly +1) = Va(L,z + 2,9)).

The term proportional to ay_; is positive since Relation (5) is true for V,,, the term proportional to g is
positive since Relation (7) is true for V,,, the term proportional to 1 — ay, is positive since Relation (5) is
true for V,,. Hence Relation (5) is true for A,, for z =k — 1.
If k<z < N -1, then

An(liz,y) + An(Liz+ 1,y +1)— An(l,z,y + 1) — An(l,z+ 1,y)

=¢:Va(l,z,y+ 1)+t asVa(l,z,y) + (1 — go — az)Vn(l,z + 1,y)

+@er1Va(lL,z+1,y+2) tagt1Va(Lz+L,y+ 1)+ (1 — gar1 — aztr1)Va(l,z + 2,y + 1)

—Van(l,z,y+2) —azVa(lLz,y+1) — (1 — gz — az)Va(l,z+ 1,y + 1)

—Ge+1Vn(L,z+ Ly +1) —azpiVa(Lz +1,y) — (1 — gog1 — aat1)Va(l, 2 + 2,9)

=¢(Va(l,z,y+ 1)+ Va(l,z+1L,y+2) — Vu(l,z,y +2) — Vi (Lz + 1,y + 1))

tar(Va(l,z,y) + Va(le+ 1,y +1) = Va(l,z,y+ 1) = Va(l,z + 1,3))

+(1—agt1 —gat1)(Va(Lz+ 1L y) + Va(l,z+2,y+1) = Vi(L,z+ 1,y+ 1) — Va (1,2 + 2,9))

+ (@241 — @) (Va(Liz + L,y +2) + Va(L,z + 1,y) —2Va(l,z + 1,y + 1)).

The terms proportional to ¢, o, and 1 — gz 41 — az4+1 are positive because Relation (5) is true for V;,. The
term proportional to ¢,+1 — ¢, is also positive because V,, is convex in y. Thus, Relation (5) is true for A,
fork<x< N -—1.
If t =N —1, then
An(lz,y) + An(Liz+ 1,y +1) — An(l,z,y + 1) — An(l,2+ 1,y)
=@ Va(L,z,y+ 1) +acVa(l,z,y) + (1 — gz —x)Vn(Le+ 1,y) + @ Va(l,z+ 1,y +2) + (1 — g)Va(L,z + 1,y + 1)
—qaVn(L,z,y+2) —azxVp(L,z,y+1) — (1 —ge —az)Va(l,z+ 1L,y +1) —@Va(Lz+ L,y +1) — (1 — qz)Va(L,z + 1,y)
=¢(Va(l,z,y+ 1)+ Va(l,z+ 1L, y+2) = Vu(L,z,y +2) — Vi (L,z + 1,y + 1))

+ax(Vn(Lz,y) + Vo (Liz + 1Ly +1) =V (Lz,y + 1) = V(1,2 + 1, 9)).



The terms proportional to ¢, and «, are positive since Relation (5) is true for V;,. Hence Relation (5) is

true for A,, for x = N — 1.
- For Relation (6), we have for y > 0,

An(07 0, y) + An(l»ozy + 1) - An(1707 y) - An(o’ovy + 1)
= Vn(170, y) + aovﬂ(1707y + 1) + (1 - aO)V"(17 17y + 1) - aOVn(1707 y) - (1 - aO)Vn(:l? 17y) - Vn(l,O,y + 1)

= (1 - CXO)(Vn(LO, y) + Vn(1717y+ 1) - Vn(L l,y) - Vn(1707y+ 1)) Z 0’

because Relation (5) is true for V;,. Hence Relation (6) holds for A,,.
- For Relation (7):

If x < k — 1, the transition rates are constant and the induction from V,, to A, is straightforward.

If z =k — 1, we may write

An(Lz,y+2)+ An(Lz+1,y) = An(Lz,y +1) — An(Liz + Ly + 1)

=ap_1Va(l,z,y+2)+ (1 —arp—1)Va(L,z+ 1,y +2) + ¢xVa(L,z+ Ly+ 1)+ axVa(Lz + 1,y) + (1 —ar — qi) Va(l,z + 2,y)
—op1Va(L,z,y+1)— (1 —oap—1)Va(l,z+ 1L, y+1) —qpVa(l,z+ 1,y +2) — o Va(l,z + 1,y + 1)

(- —ge)Vu(l,z+2,y+1)

=ap1(Va(l,z,y+2) + Va(Le + Ly +1) = Va(Lz + Ly +2) = Va(lz,y + 1))

+or(Vn(l,z+1L,y)+ Va(l,z+2,y+1) — V(Lo +2,y) — Vu(l,z + 1,y + 1))

+ax(Va(Lz+1,y+ 1)+ Va(l,z+2,y+1) = Va(l,z +2,9) = Va(l,z + 1,y +2))

+Va(l,z+2,9)+Va(l,z+1L,y+2) - Vo(l,z+1L,y+1) = Va(l,z+ 2,y + 1)

=(ag —ar_1)Va(l,z+1L,y) + Vo(l,z+ 1,y +2) — 2V, (1,2 + 1,y + 1))

+oap1(Va(l,z,y+2)+ Va(l,z+ 1,y) — Vau(L,z,y + 1) = Vo (l,z + 1,y + 1))

The term proportional to ay — ay—1 is positive since V,, is convex in y, the term proportional to aj_1 is
positive since Relation (7) is true for V,,, the term proportional to 1 — qx — « is positive since Relation (7)

is true for V,,. Relation (7) holds therefore for A,, for z = k — 1.
If k <z < N —1, then

An(Lz,y+2)+ An(lLz+1y) —An(Lz,y +1) — An(Lz+ 1Ly + 1)
=qaVa(Lz,y +3) +aaVa(L2,y +2) + (1 = o — az)Va(Lz + 1,y +2)

+@er1Va(lLiz+1Ly+ 1) +aet1Va(l,z+1,y) + (1 — get1 — aer1)Va(l,z +2,y)
—zVn(l,z,y+2) —azVa(Lz,y+1) — (1 — gz —0z)Va(l,z + 1,y + 1)

—Get+1Va(Lz+ 1L y+2) —azr1Va(l,z+ 1, y+1) — (1 — gg+1 — az+1)Va(l,z + 2,y + 1)
=¢Va(l,z,y+3)+Va(l,ze+1,y+1) - Va(l,z+ 1,y +2) — Va(l,z,y + 2))
+or:(Vn(l,z,y+2)+ Va(l,z+1,y) — Va(l,z + 1L,y +1) — Vo (1,z,y + 1))

+(1—gt1 — qe+1)(Va(Lz+ 1,y +2)+ Va(l,z+2,y) — Va(l,z+ 1,y +1) = Va(l,z+ 2,y + 1))

+ (apt1 —az)(Va(liz+ Ly +2) + Va(Lz+ 1,y) —2Va(l,z + 1,y + 1)).

The terms proportional to ¢, o, and 1 — ¢,4+1 — a1 are positive since Relation (7) is true for V;,, the
term proportional to a1 — @y is also positive since V,, is convex in y. Hence, Relation (7) is true for A,

fork<x< N —1.



If = N —1, then

An(Lz,y+2)+ An(L,z 4+ 1,y) — An(L,z,y + 1) — Ap(L,z + 1,y + 1)

=¢:Va(l,z,y+3)+aaVa(l,z,y+2)+ (1 — gz —az)Va(l,z+ 1,y +2) + ¢z Va(L,z+ 1,y + 1) + (1 — ¢2)Va (1,2 + 1,y)
—GVan(l,z,y+2)—aVa(lz,y+1) — (1 —gz —ax)Va(l,z+ 1,y+1) —geVa(Lz+ 1L,y +2) — (1 — go)Va(L,z+ 1,y + 1)
=¢(Va(l,z,y +3)+ Va(l,z+ 1L, y+1) = Va(l,z+ 1,y +2) — Vo (1, 2,y + 2))

+as(Va(l,z,y+2)+ Vi (Lz+ 1,y) — Va(l,z,y+1) = Va(1,z+ 1,y + 1))

+(1=ge—az)(Va(l,z+1,y+2) + Va(l,z+ 1,y) — 2V (1,2 + 1,y + 1)).

The terms proportional to ¢, and «, are positive since Relation (7) is true for V,,, the term proportional to

1 — g — a, is also positive since V;, is convex in y. Hence Relation (7) is true for A,, for z = N — 1.

- For Relation (8), we have

= Vn(lzovy + 2) + aOVn(LO) y) + (1 - OéU)Vn(l, Ly) - Vn(1,07y + 1) - aOVn(Lan + 1) - (1 - aO)Vn(l) 17y + 1)
= Vn(1707y+2) + V’"«(]-v ]-»y) - Vn(1:07y+ 1) - V’"«(]-v lvy + 1)

+ a0(Vn(1,0,y) + Vo (1,1,y+ 1) — Vo (1,0,y + 1) — Vi (1,1,y)).

The first term is positive since Relation (7) is true for V,,, the term proportional to «y is also positive since

Relation (5) is true for V,,. So, Relation (8) holds for A,,.

Step 5. Assume that V,, € F, for a given n > 0. We now show that D,, € F.
- For Relation (1):
If x = 0, then

+ (1 =A=8-pw)(Va(l,1,y) = Va(1,0,9)) — BVa(1,0,y) >0,

because V;, is increasing in = and since Relation (2) is true for V.
If x > 0, then

+ (1 - A= ﬁ(l‘-f— 1) - M)(Vn(1,$+ lvy) - Vn(l,ﬂf,y)) - an(lvxﬂy) 2 07

since V,, is increasing in . Hence Relation (1) is true for D,,.

- For Relation (2), we have

Dn(l,O,y) - Dn(07 O)y) = ,LLVn(O, 0’ y) + (1 —A- u)(Vn(l,O,y) - Vn(07 O)y)) - /—LVn(O,O, y) Z 0.

Then, Relation (2) holds for D,,.

- For Relation (3):
If x > 0, then

+ 11 (z=0)(Va(0,0,y + 1) = Vi (0,0,9)) + plz>0) (Ve (1,2 — Ly + 1) = V(1,2 — 1,y))

+(1-A=Bz—pu)(Va(l,z,y+1) — Vu(l,2,y)) >0,



since V,, is increasing in y. Thus, Relation (3) is true for D,,.
- Relation (4) is obviously also true.

- For Relation (5):
If ,y > 0, then

Dn(1,z,y) + Dn(l,z+ 1,y +1) — Dp(l,z 4+ 1,y) — Dn(1,z,y + 1)

=Bz(Vo(l,z — Ly) + Va(l,z,y+ 1) = Vo (L,z,y) — Vo (L,z — Ly + 1)) + B(Va(l,z,y + 1) — Vo (1, 2,9))
+ 11 (=0 (Vin(0,0,9) + Vi (1,0,y + 1) — Vi (1,0,) — Viu (0,0, 9 + 1))

+4les0)(Va(l,z — Ly) + Va(Liz,y + 1) = Va(L,2,y) = Va(l,z — 1,y + 1))
+A=-2A=8+1)—p)(Val,z,y) + Va(l,z+ 1L,y +1) = Va(l,z+ 1,y) — Va(l,z,y + 1))
+B8(Va(l,3,y) = Va(l,z,y + 1)) 20,

since Relations (5) and (6) are true for V,,.
- For Relation (6), we have for y > 0,

Dn(0707y) +Dn(1707y+ 1) - Dn(lvovy) - D’VL(OvayJ’_ 1)

= :L"(Vﬂ(o707y+ 1) - Vn(07 0’ y)) + (1 - A= ,LL)(Vn(0,0,y) + Vn(1707y+ 1) - Vn(l’(),y) - Vn(ovo’y'" 1))

since Relation (6) is true for V.

- For Relation (7):
If z,y > 0, then

Dn(l,z,y+2)+ Dn(l,z+ 1,y) — Dp(l,z,y + 1) — Dp(l,z + 1L,y + 1)

=Bz(Va(L,z — L,y +2)+ Va(l,z,y) = Va(l,z = Ly + 1) = Vau(Lz,y + 1)) + B(Va(l,2,y) — Va(l, 2,y + 1))
+ 11 (z=0)(Va(0,0,y +2) + Va(1,0,y) — Va(0,0,y + 1) — Vo(1,0,y + 1))

+ulesey(Va(lz = Ly +2)+ Vo(Lz,y) — Va(l,z — Ly +1) = Vo (L,z,y + 1))
+(1=-2A=8x+1)—pw(Va(l,z,y+2)+ Va(l,z+ 1,y) — Vu(L,z,y+ 1) — Vp(L,z+ 1,y + 1))

+ B(Vn(l,m,y + 2) - Vn(l)mvy + 1)) Z E(Vn(l,m,y + 2) + Vn(l,:c,y) - 2Vn(1,:l‘,y + 1)) Z 07
since Relations (7) and (8) are true for V,, and V,, is convex in y. Therefore, Relation (7) is true for D,,.
- For Relation (8), we have for y > 0,
Dn(0707y+2) +D’ﬂ(1’09y) - D’ﬂ(0709y+ 1) 7Dn(1707y+ 1)

= pu(Vn(0,0,y) — Vn(0,0,y+ 1)) + (1 — A — u)(Vn(0,0,y + 2) + Vi (1,0,y) — Vi(0,0,y + 1) — Vi (1,0,y + 1))

+#(Vn(0a0,y + 2) - Vn(oyovy+ 1)) > H(Vn(oyovy+ 2) + Vn(07 O,y) - 2Vn(010:y+ 1)) >0,

since Relation (8) is true for V,, and V,, is convex in y. Hence, Relation Relation (8) is true for D,,. The
optimal policy is therefore a threshold policy.

We next prove that non-idling is optimal. We consider a threshold policy on the number of queued
outbounds. We denote by 3’ the threshold on queue 2 such that the service of outbounds is allowed only
if queue 2 has at least ¢y outbounds (y’ > 0). The threshold g’ is such that if 0 < y < y’ no transition is
possible from state (z,z,y) to any other state with strictly less than y outbounds for z = 0,1, > 0 and

0 < y < 3. Therefore, all states with strictly less than 3’ outbound calls in queue 2 are transient states.



Hence, the probability to be in such a state is zero in the long run. In the stationary regime, the system
always contains at least ¥’ — 1 outbounds in queue 2 since the server becomes idle after a service completion
if y =3y’ — 1. Therefore, all stationary performance measures related to inbounds are insensitive to y’. The
only effect of 3 is to force the system to contain an inventory of at least 3y’ — 1 waiting outbounds. Hence,
the expected waiting time for outbounds increases with y’. It then follows that the optimal choice to solve
the optimization problem (min SC) is to choose y’ = 1. In other words, non-idling is optimal. The proof is

completed. O

2 Proof of Corollary 2

For 0 < z < gy we have

Apz0 = (z + 1) pupzt1.0-

Thus
ayo
Pyo,0 = wpo,&

o0
We denote by P, = ) p,; for > yo. We may write for yo < z < s,
i=0

=

AP, = (x + D)uPpy.

Then, '
x
Pyota = ﬁ Yoo
for 0 <z < s—1yg. We also have
Poio = (al - a))”fP&
5T
for 0 <z <k, and
Psikta = MS—:QWPs+k7

oo
for x > 0. Knowing that you(Py, — Pye,0) = A Y Pstkts, we obtain

=0
a¥0
P 4ol P00
Yo = 1 T avoyel (a(i-a)* 1
qy, ] Sk _al—a—a)

Since all system state probabilities sum up to one, we deduce that

—1
avo [CTET amyg a0y KT (ama))® | 0t Y040t (alima))® 1
! Z + EO sT + s! 1711(1—11—04)
= Tr= s

_1 T 7 T k
vo—l = N Yo =, Wot=) s s
0,0 — oy
po, — ! 1 _ ga a®"¥0yq! (a(l—a)k 1
=0 qyg Sl sk l_a(lqua)
s

Having in hand the system state stationary probabilities, we may write

= qu+k
U=q3 Poppa= —Lth

S



Using Little law, we also have A(1 — U — P,)E(W7) = > ©Ps;,. Then,
=0

k—1 oo k—1

k(1 - ezume)) | alooc)

]. - b S S
A1 =0 = PYEWY) = S aPoa + 3@+ B Payre = B S o= 4 p 2 :
=0 =0 x=0 $ (1 — @)
which finishes the proof of the corollary. O

3 Proof of Proposition 3

We define P, as P, = > p,, for > s. Because of the non-idling policy, we do not allow states where y > 0
y=0

and r < s.

We have zppgo0 = Apg—1,0 for 1 < z < s, Pepy(su+28) = (1 — ap—1)Psig—1 for 1 < z < k and

)\ s
Ps+k+z(5,u + (l' + k')/B) = (1 — Oktz—1 — Qk+x—1)Ps+k+x—1 for z > 1. Therefore, Ps,0 = %pom Py, =
k z+k
x ) Hl(lfai,l) 1;[+1(1*ai—174i—1)
— QG — i= i=
P )\* H ( S#Hﬁl) for 0 <z <k, and Pyypqp = PATTF = for z > 0.
i=1 [T (sp+ip)
i=1
oo
Observing that sp(Ps — ps,0) = A Y. Gk+oPstk+a, we deduce that
=0
Ps = E s P0,0-
k oo Ttz ATTE T (1—aj_1-q¢;-1)
1-2[[(1-aim) i

i=1 =0 TT (sni8)

Since all system state probabilities sum up to one, we may write
1 )T ¢ N
s k T g, o R l-ai1 A l—aj_1—qi—1
o | DAL (GEE) + S e
s=1 =0 =1 z=1 1 (suti)
Po,0 = Z;"r S =
z=0" & 0o qk+m)\””+’“/v_l;[ JAmeici=gio1)
I-2JT(1—aim1) X0 e
i=1 =0

z+k
‘l:Il (sp+iB)

We now use the stationary probabilities to derive the system performance measures. The proportion of
customers who ask for the callback offer is

z+k
akre 3™ T (maio1—gio1)
0o dk+a i—1—qi—1

k
s i—=k
IO —aim1) X ;HH
oo s i=1 z=0 1 (su+if)
U= griaPothta =~ (Ps —pso) = — P0,0-
z=0 a k 0 Qk+zkz+k_7lk_l+1(1—a1,—1—f11:—1)
1=5 I~ ai) ik
=1 #=0 I1 (sutif)
.

The proportion of customers who balk from queue 1 is

wtk
Q2 X TF T (1—ai_1—qi1)

a’® k ey (1o &= k i=k+1
S| XX Tl (S ) + 2 ke [T — i) s
oo =0 i=1 =1 i=1 11 (su+iB)
i=1
P, = Zaazps+z = ik Po0,0-
=0 k oo Thta AR l;[+1(1—a71—1—q71_1)
1-— %H (1—041',1) ':rk
=1 =0 11 (sp+iB)

i=1
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The expected number of customers in queue 1, say E(Ny), is

x+k
s k T o0 k Qk+z>\z+k‘71;[+1(1_ai71_(h'71)
% ZCC)\IH ( SMJ:;B1>+ Z(k—i—x)n 1—ai—1) zjrk
) =0 i=1 z=1 i=1 H (sp+iB)
E(N1) =) aPsjs = " = P0,0-
=0 k o q}c+z>‘1+k_71;[+1(1*‘1i—1*%—1)
1-STT(A—aim1) X2 e
i=1 z=0 [T (sp+iB)
i=1
We next deduce that
x+k
R K T o oo k Qk+m>\m+k,7l;[ 1(1*%71*%71)
S (aerxg) 2T ( Slﬁz;;) + 3 (az+k+(:p+k)§> ITAQ—a-1) ;jr]:r
=0 i=1 r=1 =1 11 (su+iB)
i=1
Po = " P0,0,
k o qr«+x)\w+k__l;1 1(1*%—1*%—1)
1-2J[(1-ai-1) X e
i=1 z=0 [T (sp+iB)
i=1

and using Little law, the expected waiting time in queue 1 (for served customers and customers who abandon

after experiencing some wait) is given by

E(N
E(Wy) = _ BEM)
AN1— VU — P)
z+k
. k T o k q}c+z>‘m+k’__l;[+l(17ai—l*‘h—l)
% ST aN*I] ( sy.-«—li_ﬁl)—’_ Z(z-}-k).l_[(l—az_l) ;1k
1 =0 i=1 =1 i=1 .1:[1 (sp+iB)
= — — P0,0-
z+k )
A Sk:—l T 11— 0o s k Qk+w>\r+k__13 1“*‘%1—1*‘11,—1)
1= % 3 aed®J] < TR ) P0,0 + 25 (ko Trpo,0 + 5 (po,o — 1)) [T (1 —ai-1) S
=0 i=1 =0 =1 v]:ll(s,u-s-i,@)
This completes the proof of the proposition. O
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